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1. INTRODUCTION

Let M be a real, normed linear space equipped with the norm II . II, and
let L be an n-dimensional linear subspace of M. If U denotes the unit sphere
of L, defined by

U = {/E L: II/II = I},

then, for a given m E M, an element u* E U satisfying

II u* - m II :'(; II u - mil, VUE U, (I.l)

is a best approximation to m of unit norm. The problem of finding such a u*
is a particular example of a constrained best approximation problem. Such
problems have received considerable attention in recent years, mainly with
reference to the Chebyshev norm (see, for example, the review papers by
Taylor [7] and Chalmers and Taylor[ID. For this norm, the present problem
(with the assumption that L is a Haar subspace) has been studied by Ross
and Belford [6], from the point of view of characterisation of local solutions
(i.e., solutions u* for which the inequality in (I.l) is satisfied for all u E U ()
N(u*), with N(u*) a neighbourhood of u*). The application of optimization
(rather than more conventionalapproximation theoretic) techniques to general
classes of nonlinear finite-dimensional inequality constrained best approxi
mation problems is considered in [3, 8], and various conditions for a solution
are derived. It is the object of this paper to apply similar techniques to the
prescribed norm problem defined (without loss of generality) above.

If L is spanned by 11 ,/2 "", In' then any element of L may be expressed
in the form

n

I(a) = I aJi'
i~l
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aER". (1.2)
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The problem may then be restated as follows:

find aE Rn to minimize II r(a)ll,
where rea) = lea) - m
and !11(a)11 = 1.
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(1.3)

If there are only isolated points satisfying the constraint Ii l(a) II = 1 (for
example, if n = 1, M = Rl), then each of these points gives, by definition,
a local best approximation. We exclude this case therefore, and are thus
able to define feasible directional sequences. Let {aU,)} -+ a* be a sequence
of points in Rn such that if

II s(k)11 = 1, O(k) > 0 (1.4)

defines 8U') and S(k) (where the norm is any norm on Rn), then sU:) converges,
to s, say. Then {ark)} is a directional sequence. If 111(a(kJ)11 = 1, then this
sequence is feasible, and s is said to be a feasible direction at a* with respect
to the constraint of (1.3).

Now let MD be the dual space of M, and II ' liD the dual norm on MD,
Then MD is the space of continuous linear functionals v(m) defined on AI,
and it is convenient to write

v(m) = <m, v) (1.5)

thus expressing the linear functional as an inner product between the elements
of M and those of MD. An important role is played in what follows by the
set of subgradients of II m II at m, which is the set of elements v E kID which
satisfy

II m II - II 11 II ~ <m - n, v) 'if 11 E AI. (1.6)

If this set is denoted by V(m), then it is readily shown that we have

V(m) = {v E MD: 11171 II = <m, v), I! L' liD ~ I}. (1.7)

The relationship between appropriate subgradients and the directional
derivatives of the functions occurring in (1.3) is a crucial one, and the
following result (which essentially generalizes Lemma 3 of [3]) is of funda
mental importmlce.· For convenience, the abbreviations rU:), 1*, etc., will be
used to denote: r(a(kl), l(a*), etc., whenever they occur throughout this
paper.

LEMMA 1. Let {ak} -+ a* be a directional sequence defining s through (L4).
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II r(") II-II r* II
lim . = max <1(s), v).
k-"OJ Ok vE V(r*)

Proof For all v E V(r*) we have from (1.6)

II r(k)11 - II 1'* II ~ <r(") - r*, v)

= o(k)<I(s(k», v).

Also for V(k) E V(r(k»,

Ilr(k)11 = <r("), V(k»

= <r(a* + O(k)S("», V(k»

~ II 1'* II + o(k)(I(s(k», V(k».

Thus

<1(s(lc», v(Ie» ~ II r(le) I~~ II 1'* II ~ </(s(k», v) for all v E V(r*). (1.8)

By the weak * compactness of the unit ball in MD (Alaoglu-Bourbaki
theorem, e.g., Holmes [4]), there exists a sequence {O(k)} ---->- 0 and WE MD
such that

<m, v(Ie» ---->- (m, w)

for all mE M. Further

as k ---->- CI)

o ~ II 1'* II - <1'*, V(k» ~ O(O(k»

and so W E V(r*). Letting k ---->- CI) along any such appropriate sequence,
the result follows from the inequalities (1.8).

2. CONDITIONS FOR A BEST ApPROXIMATION

Let $'* define the set of feasible directions for (1.3) at the (feasible)
point a *, and define the sets

I
;! l= Is ERn: II S II = 1, max <1(s), v) !::l 01·
F
* VEV(l*)
N <

LEMMA 2. F* = $'*.
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Proof Let 8 E F*. Then there exists a feasible directional sequence
{ark)} __ a*. Thus by Lemma I for the special case when 111 = 0, SE F*

Now let 8 EF*. Then

max <1(8), v) = O.
VEVU')

(2.1)

Let a(b) = a* + 08, 0 ?: O. Then {a(oU':i)} is a directional sequence, where
!)(k) to as k -- 00. If Ii l(a(o(k»))ll = 1 for k sufficiently large, then the direc
tional sequence is feasible and the required result follows. Otherwise, let
Ill(a(o(l':i))li = exU') and let elk) = a(ou':»)!cx(k), which is defined for all k suffi
cienly large. Then Ill(elk»)ll = 1, and it remains to sho\v that {C(k)} -- a*
is a directional sequence. Now by Lemma I, with m set equal to zero again,

. Ill(a(o(k»))11 - 111* II __ 0
hm \ '
k->CJJ 8(k,

and so

lim I ex(k) - 1 I = O.
k->x, 8Ud

Also

II
CUd - a* _ II = II eUe

) - a(S(k») 'I
oU.:) 8 8(/e) I

I 1 - aU.:) I II a(o(k»)11
O(k) eY')

Thus 8 E F*.

LEMMA 3. Let a* gilJe a best approximation. Then

max <1(8), v) ?: 0
'vEV(r*)

vS E F*.

Proof Assume a* gives a best approximation, and let 8 EF*. Then
8 E F* by Lemma 2, and so there exists a feasible directional sequence
{ark)} __ a* with

II r(k) II ?: II r* II

for all k sufficiently large. Thus

. Ii r(k) II - Ii r* Ii
hm O(k\ ?: 0k->x,

and the result follows from Lemma 1.
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LEMMA 4. If a* is feasible, and if

max </(s), v) > 0
PEV(r')

VSEF* (2.2)

then a* gives an isolated local best approximation, in the sense that there
exists a neighbourhood, N(/*), of 1* such that 11/* - m II < 11/(a) - m II
for alll(a) E Un N(/*), a =1= a*.

Proof Let (2.2) be satisfied, let a* be feasible, but suppose that a*
does not give an isolated local best aproximation. Then there exists a feasible
sequence, and hence a feasible directional sequence {a(k)} -'>- a* such that

II r(k) II ~ il 1'* II

for all k sufficiently large. Lemma 1 gives a contradiction and the result
follows.

It is convenient at this point to introduce two separate cases of problem
(1.3). Define the set G by

G = {g E R": II r(g)11 ~ II r(a)11 Va ERn},

i.e., G is the set ofvectors such that leg) is a best unconstrained approximation.
The following characterization of G is required later (see, for example,
[9] for a proof).

LEMMA 5. g E G iff :3 v E V(r(g)) such that <Ii, v) = 0, i = 1, 2, ... , n.

If 11/(g)11 ?: 1 for all g E G, then problem (1.3) is precisely equivalent to:

find a E R" to minimize II r(a)11

subject to 111(a)11 ~ 1.
(2.3)

With some modifications, the analysis of [3] is now directly applicable to
this problem: since (2.3) is a convex programming problem, necessary and
sufficient conditions for a solution may readily be obtained.

THEOREM 1. Let 111(g)" ?: 1for all g E G. Then a* solves (1.3) iff:3 v E V(r*),
W E V(l*), " ?: 0 such that

<Ii, v) + "<Ii' w) = 0, i = 1,2,..., n. (2.4)

Proof Let a* be a solution. If a* E G then the desired result holds with
" = 0 for some v E V(r*) by Lemma 5. Thus we assume a* 1= G. We first
show that

max </(s), v) ?: 0
PEV(r')

(2.5)
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for all S E F* U Ft . If S E F* this inequality is a consequence of Lemma 3
so let S EFt. Then

. 11/(k) II - 11/* [I
J!~ i)(k) < 0

using Lemma 1, where {a(k)} ->- a* is a directional sequence, so that

II Ill:) II < 11/* II = 1

for k sufficiently large. Now if (2.5) is not satisfied, Lemma 1 gives that

II r(k) II < II r* [!

for k sufficiently large. Thus the fact that a* solves (2.3) is contradicted,
and so (2.5) must hold as required.

Now define the closed, bounded, convex sets in Rn

B = {b: bi = <-Ii' v), i = 1,2,... , n, v E V(r*)},

D = {d: di = <Ii, W), i = 1,2,... , n, IV E V(l*)}

and let K be the convex cone in Rn generated by D, i.e.,

K = {k: k = ad, dED,x ~ O}.

Now D does not contain the origin (for by Lemma 5 applied with 111 = 0
that would imply that a* minimizes 11/(a)ll, a contradiction). Thus K is closed,
and so by a standard separation result (for example, Lemma 6 of [3]) if
K (\ B = 0, there exists S E Rn such that

\ifkEK,

\if b EO B.

Thus :3 S EO F* U Ft for which (2.5) does not hold, which shows that
K (\ B F G, and establishes the "only if" part of the theorem.

Now let the conditions (2.4) be satisfied at a*, and let a E Rn be any other
feasible point. Then for any v E V(r*), W E V(l*), A~ 0 satisfying (2.4)
we have

II r(a)11 - II r* II ~ </(a) - 1*, v)

= -1I.</(a) - 1*, w)

= -A</(a), w) + A
= A(l - </(a), w» ;;;: o.
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VSEF*uF;.

Remark. The proof of sufficiency of (2.4) does not require any assumption
about the set G.

If 11/(g)11 < 1 for some g E G, then (1.3) is no longer equivalent to a convex
programming problem: there may exist local best approximations which
are not global, and in addition it is not always possible to close the gap
between necessary conditions and sufficient conditions. In order to obtain
necessary conditions analogous to those in Theorem 1, we require the
following strengthened form of Lemma 3.

LEMMA 6. Let 11/(g)11 < 1 for some g E G, and let a* solve (1.3) with
a* rf= G. Then

max </(s), v) ? 0
"EV(r")

Proof. If s E F*, the inequality follows from Lemma 3, so let s E F; .
Then using Lemma 1, if {a(l.'l} -+ a* is a directional sequence defining s,

II/Ue) II > 11/* II = 1

for k sufficiently large. Assume that

max </(s), v) < O.
VEV(r*)

Then
II rUel II < II r* II

(2.6)

(2.7)

for k sufficiently large, by Lemma 1. Also, by assumption, 3 g E G such that

II r(g)II < II 1'* II
with

1!/(g)11 < 1.

Thus from (2.6) and (2.9),3 ,\<kl, 0 < ,\<1.') < 1, such that

11/(a(,\<k»))[1 = 1,

where a(,\<I.'I) = ,\<k)a(k) + (I - ,\<k») g. Further by (2.7) and (2.8)

II r(a(,\<k»))[[ < [[ r* [I,

(2.8)

(2.9)

and since a(,\<k») -+ a* as k -+ 00, we contradict the fact that a* gives a
local best approximation, and the result follows.

THEOREM 2. Let [I I(g)II < 1 for some g E G, and let a* solve (1.3). Then
for each W E V(l*), 3 v E V(r*), "- ~ 0 such that

<Ii, v) + "-<Ii' w) = 0, i = 1,2,... , n. (2.10)
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Proof Let a* solve (1.3). Then if a* E G, (2.10) is satisfied for some
v E V(r*) with ,\ = 0, by Lemma 5. Thus we consider the case when a* $ G,
and we will assume that the conditions (2.10) do not hold. Then:l w* E V(!"')
such that no v E V(r*), ,\ ~ °satisfying (2.10) exist. Let K denote the set

K = {k: k = Ct:d, d; = (I;, w*), i = 1,2,... , n, ex ~ O}.

Now d # °(or else, by Lemma 5, applied with In = 0, we have the con
clusion that a* minimizes 11/(a)[[, a contradiction), and so K is a closed,
half-line. Let B denote the closed, bounded convex set

B = {b: b; = (I; , v), i = 1,2,... , n, v E V(r*)}.

Then J( n B = 0 by assumption, and so :I S E Rn such that

VkEK,

VbEB.

This contradicts Lemma 6, and the result follows.
Theorems 1 and 2 taken together show that if a* solves (1.3), :I v E V(r*),

If E V(l*) and a scalar ,\ such that

(I; , v) + A(l; , IV) = 0, i = 1,2,... , n.

This particular form of necessary conditions gives a natural generalization
of the differentiable case. Further, if A ~ 0, then this condition is sufficient
for a* to solve (1.3). The conditions of Theorem 2 may in certain circum
stances also be sufficient for a local best approximation. We have the
following result.

THEOREM 3. Let a* be a feasible point such that

(i) for each w E V(l*), :I v E V(r*) and ,\ ~ 0 such that

(I; , v) + /.<./; , w) = 0, i = 1,2,..., n (2.11)

(ii) there exists a neighbourhood N(a*) of a* sllch that

V(l(a)) C V(l*), Va E N(a*). (2.] 2)

Then a * is a local solution of (1.3).

Proof Let {alle)} be any feasible sequence converging to a*, a point
for which the given conditions (i) and (ii) are both satisfied. Then :I IV* E V(l*)
such that

(1<">, w*) = Ii [Ue) :j = 1
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for k sufficiently large. Let v* E V(r*), A* and w* satisfy (2.11). Then

II rU') II - II r* II )0 <IUd - 1*, v*>

= -A*<I(k) - 1*, w*>

=0.

This theorem is particularly useful when (Ll) is set in a finite-dimensional
space normed by a polyhedral norm. Consider the consistent set of linear
inequalities

Bu:::;;; e,

where u E Rt, B is an N X t matrix, and e E RN is a vector, each component
of which is 1. Then if

(i) C = {u: Bu :::;;; e} is bounded and has a nonvoid interior,

(ii) u E C if and only if -u E C,

the polyhedral norm on Rt specified by B is defined by

II u II = min{fL: Bu :::;;; fLe}.

THEOREM 4. Let M = Rt, normed by a polyhedral norm defined by the
N X t matrix B. If condition (i) of Theorem 3 is satisfied at a feasible point
a*, then a* is a local solution of(1.3).

Proof It suffices to show that condition (ii) of Theorem 3 is automatically
satisfied. Now at a*, let I* be defined by

<bi ,r*> = [I r* II,
<bi ,r*> < [I r* II,

i E I*,

i ¢: I*,

where bi E Rt denotes the ith row of B. Then V(r*) is the convex hull of the
set {bi , i E I*} (see, for example, [3] for a proof of this). Thus :I N(a*) for
which (2.12) is satisfied and the result follows.

If V(l*) and V(r*) both contain unique elements v* and w*, it follows that
III(a)11 and II r(a)11 are differentiable at a* (Rockafellar [5]). If, in addition,
these functions are twice continuously differentiable in a neighbourhood
of a*, then standard results from (differentiable) optimization theory are
available to supplement those given earlier. In particular, if the norm is
smooth, then such second-order conditions may be obtained in a natural
manner. If it is known that 111(g)11 )0 I for all g E G, such conditions are of
course redundant; however, their derivation, and application, does not
require such information. For completeness, we quote the relevant results
as they apply in this particular case; see Fiacco and McCormick [2] for details.
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Let v* E V(r*), w* E V(l*), II.* < °satisfy
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<1;, v*) + ,\* < Ii, w*) = 0,

and define

i = 1,2,... , n, (2.13)

.P(a) = II r(a)II+ II.* 111(a)ll,
z* = {s ERn: II S II = 1, <l(s), v*) = <l(s), w*) = OJ.

THEOREM 5. Let 111(a)11 and II r(a)11 be twice continuously differentiable
in a neighbourhood of a*, a feasible point satisfying (2.13). Then

(i) if a* solves (1.3), then

vS E Z*,

(ii) if

vS E Z*,

then a* is an isolated local solution of (1.3).

3. EXAMPLES

We conclude with some examples intended to illustrate the application
of some of the results of the previous section, for the case where
M = C[-I, 1], normed with the Loo norm (see also [6]).

EXAMPLE 1.

n = 2,

Let a* = (1, -I)T. Then

11 = 1,

111* II = 111 - x2 II = 1

with V(l*) = {8(O)}, where 8 is the delta function defined forf(x) E I\lf by

<f(x), 8(0) = f(~)·

Further

II r* II = Ii 1 - x 2
- t Xl !I = 1

with V(r*) = {8(O)}. Necessary conditions are therefore satisfied at a"'
with,\ = -1. Further, any perturbation of a* will result in 111(a)11 still being
attained at the single point x = 0, and so the conditions of Theorem 3
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are satisfied, showing that a* gives a local best approximation. Notice that
for this example

and so (2.2) of Lemma 4 is not satisfied.

EXAMPLE 2.

n = 3,

Let a* = (1,0, -IY. As in the previous example

V(l*) = {0(0)}

and also

V(r*) = conv {o(-I), 0(1)}

= conv {o( - vi-2 - 2(3), o(vi-2 - 2(3)}

{o(O)}

= conv{-o(-l), 0(0), -o(l)}

= conv{-o(-I), -0(1)}

-i ~ f3 ~ -1,

-1 ~ f3 < 1,

f3 - ti
- 4'

Necessary conditions are satisfied for -1 ~ f3 ~ ! by taking v = 0(0),
,\ = -1. The set F* is given by {s E R3, II s II = 1, Sl = O} and so (2.2) of
Lemma 4 is not satisfied for any of these values of f3. In addition condition
(ii) of Theorem 3 is not satisfied. However, when -1 ~ f3 < 1, both /I r(a)11
and 111(a)/I are differentiable functions at a = a*, and thus the possibility
exists of further information being provided by second-order conditions.
Now if -1 < f3 < 1, any perturbation of a* will result in Ilr(a)11 and 111(a)11
both still being attained at the single points gand 'rJ respectively, where the
derivatives with respect to x of the nOfmed functions vanish. Thus derivatives
in a neighbourhood of a* are given by

where g must satisfy

and V 111(a)11 = (1, '1), '1)2y, where '1) = -a2/2a3 • It follows that the approp
riate functions are twice differentiable in a neighbourhood of a* and so
Theorem 5 may be applied.
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Now

and so

y22'(a*)
o

-(3/(2(3 + 2)
o ~]

ST'72 07(a*) S = _ (3 ~ 2
v .z; 2(3 + 2 v2 •

Thus the conditions of Theorem 5(i) are not satisfied if (3 > 0, and so for
o < f3 < !,I* is not a local best approximation. Now let a* = (-i, 0, iY~
Then for f3 E [-1, !l

V(/*) = conv{8(-I), 8(l)};

V(r*) = conv{8(-1), 8(l)}

= conv{8(-1), -8(0), 8(l)}

= {8(0)}

-1 :(; f3 < 0,

f3 = 0,

o <f3:(;!-

Thus necessary conditions are satisfied for -1 :(; f3 :(; 0 by taking v = w,
,\ = -1 for any IV E V(l*). Also, since any perturbation of a* results in
11/(a)l! being attained at x = -1 and/or x = +L Theorem 3 applies, showing
that a* is a local solution to (1.3) for these values of /3.
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